
Teaching computer programming with PRIMM: a sociocultural

perspective

Sue Sentancea, Jane Waiteb and Maria Kalliaa

aKing’s College London, London, UK; bQueen Mary University of London, London, UK

AUTHOR PRE-PRINT

ABSTRACT
With Computing becoming a mandatory subject in several countries, pedagogi-
cal strategies to support young learners are needed, particularly to learn computer
programming, which novice adults have struggled with for decades. As with other
discipline-based education research these developments should be informed by our
understanding of education and underpinned by longstanding theoretical perspec-
tives of learning. In this paper we draw on Vygotskian ideas of mediation, tools and
the zone of proximal development (ZPD) to give a theoretical lens for the learning of
programming. Drawing together this sociocultural perspective and previous research
in computer science education we present a strategy for teaching programming we
have called PRIMM (Predict, Run, Investigate, Modify, Make). We describe our
evaluation of PRIMM in 13 schools in [country] through a mixed-methods study
and offer this approach as an effective model for the teaching of programming.
Through our evaluation of PRIMM and engagement with classroom teachers in our
research, we propose a framework for understanding the learning of programming
in the classroom, and present this as an avenue for further research.

KEYWORDS
computer programming, computer science education, K-12 education, pedagogy,
sociocultural theory, Vygotsky

1. Introduction

With mandatory computing being introduced in more countries, the prospect of every
child in school studying computing throughout their school years is exciting. However
this change brings a challenge, particularly where computer programming is part of
every school’s core curriculum. To truly champion computing literacy, we need to both
disentangle and understand the learning of programming so that it is truly accessible
to all (The Royal Society, 2017). This is not going to be easy when adult novices in
higher education have previously struggled to learn programming (Robins, Rountree,
and Rountree, 2003).

Teachers who are new to teaching computing need to develop their pedagogical
content knowledge (PCK) (Shulman, 1986) as they become more skilled at teaching
programming to young learners. Even experienced teachers faced with teaching pro-
gramming for the first time will not have a toolkit of strategies applicable to this
domain. There is a need to develop, evaluate and resource effective teaching strategies
for the K-12 classroom.

Contact email: sue.sentance@kcl.ac.uk

In addition, whilst there is substantial research into the teaching and learning of
computer programming, it has not extensively been informed by a sociocultural view
of learning, rather focusing on cognitive approaches to learning (Tenenberg and Kno-
belsdorf, 2014). As such approaches do not account for all the phenomena observed
in teaching and learning (Machanick, 2007), a sociocultural perspective enables us
to consider how learning is impacted by society, its agents, the environment and so-
cial factors. In this paper we present a pedagogical model that is underpinned by a
sociocultural view of learning, in particular using a Vygotskian perspective.

Drawing on both existing research into the learning of computer programming, and
with our Vygotskian lens, we have developed and trialled a framework for teaching
programming called PRIMM (Predict-Run-Investigate-Modify-Make) (Sentance and
Waite, 2017; Sentance, Waite, and Kallia, 2019). PRIMM is a method of teaching
programming that counters the known problem of novices writing programs before
they are yet able to read them, and focuses on students talking about how and why
programs work before they tackle editing and writing their own programs. We have
conducted a mixed-methods study researching the impact of the PRIMM method for
teaching programming. Through this study, we can see an impact of PRIMM on learn-
ers and teachers. Positive quantitative results of learner outcomes are supported by the
teachers’ explanations about why this method works for them. Through the PRIMM
research, we are formulating a model that suggests that developing a structured ap-
proach to teaching and learning programming draws on teachers, peers and carefully
selected content. Our model is informed by and aligns with the Vygotskian concept
of mediation and the zone of proximal development. The results of the study point to
the way that language is used in the learning of programming.

This paper is structured as follows. Firstly we consider previous research around the
teaching and learning of programming, focusing primarily on pedagogical strategies
teachers can use. Secondly we describe how a sociocultural perspective, particularly
using the work of Vygotsky, can inform both an overarching framework and also the
specific PRIMM model that we are describing in this paper. Thirdly, we describe a
mixed-methods study of the use of PRIMM in the classroom and the results. Finally, we
outline where future research can be directed to gain more understanding of effective
teaching strategies for programming, particularly in the school classroom.

2. Teaching and learning programming

2.1. The challenges

For many students, computer programming is among the most challenging aspects
of computer science (Jenkins, 2002). Many computing education researchers have en-
deavored to identify the sources of students’ difficulties in programming, some focus-
ing on categorising problematic areas. For example, going back to the 1980s, Perkins
and Martin (1986) identified four types of fragile knowledge: partial knowledge, inert
knowledge, misplaced knowledge, and conglomerated knowledge. Du Boulay (1986)
also explored and categorised curriculum areas that students experience difficulties:
orientation, notional machine, notation, structures and pragmatics, and made a step
further suggesting specific types of errors students make: misapplication of analogy,
overgeneralisations and interactions. Other researchers have focused on bugs and mis-
conceptions. Pea (1986) identified conceptual bugs that students often make in their
attempt to communicate with the computer. Particularly, Pea highlights three types

2

of such bugs, the parallelism bug, intentionality and egocentrism. All these bugs
refer to students’ perceptions about computers’ and code capabilities. Spohrer and
Soloway (1986) categorised students’ errors into two categories: construct-based prob-
lems, which are problems that refer to the semantics of programming constructs, and
plan composition problems, which refer to difficulties in putting plans together. Sorva,
Karavirta, and Malmi (2013) describe a range of challenges facing novice programmers
including static perceptions of programming, misconceptions, difficulties understand-
ing the computer and tracing and program state. Actual concepts novice programmers
struggle with include variables, loops, and parameter passing (Wiegand, Bucci, Ku-
mar, Albert, and Gaspar, 2016), and recent work has identified a range of (41) specific
programming misconceptions relating to these concepts (Sorva, 2018).

Generally, research agrees that novices’ problems do not only centre around syntax
or semantics but mostly on how to associate these to construct a program (Robins
et al., 2003); additionally, students have a surface knowledge of programming which is
context specific and, thus, it is difficult to be applied in different contexts (Lahtinen,
Ala-Mutka, and Järvinen, 2005). It has been argued that programming is a hierarchi-
cal skill, and that students who do not understand a topic cannot advance to the next
one (Rahmat, Shahrani, Latih, Yatim, Zainal, and Ab Rahman, 2012). For example,
Linn and Dalbey (1985) suggested three chained cognitive accomplishments that stu-
dents should exhibit: single language features, design skills, and problem-solving skills.
This hierarchy of dependent knowledge and skills compounds the difficulties faced by
students when learning to program.

Actually writing code (as opposed to reading) is particularly hard for novice pro-
grammers (Denny, Luxton-Reilly, and Simon, 2008; Qian and Lehman, 2017), and
it is commonly believed that code tracing is easier than code writing (Denny et al.,
2008), with some research showing a correlation (Lopez, Whalley, Robbins, and Lister,
2008; Sheard, Carbone, Lister, Simon, Thompson, and Whalley, 2008), with others less
conclusive (Simon, Lopez, Sutton, and Clear, 2009). Many students find code tracing
challenging (Vainio and Sajaniemi, 2007) with particular difficulties being around sin-
gle value tracing, confusion of function and structure, external representations and
levels of abstraction.

With so many challenges we can appreciate what is described as the “long and
torturous cognitive development of the novice programmer”(Corney, Teague, Ahadi,
and Lister, 2012, p.86). However to be able to teach programming effectively in school,
we need to look beyond challenges to effective teaching strategies that take into account
those difficulties, which can be used with all ages of learners.

2.2. Modelling learning

Over time, learning models have been developed to explain how novices learn pro-
gramming. Some examples (not exhaustive) are given here.

2.2.1. The notional machine

The concept of a programmers’ mental model of a notional machine refers to the
behaviour of static code as it becomes a running process (Du Boulay, 1986), although
more research is needed on what this means in terms of pedagogy (Ben-Ari, 1998; Sorva
et al., 2013). Notional machines are a major challenge in introductory programming
education and thus one view is that the notional machine should be a specific learning
objective in the teaching of programming (Sorva, 2013).

3

2.2.2. Levels of Abstraction

The Levels of Abstraction (LOA) framework has been suggested to support novices
in their learning to program (Perrenet, Groote, and Kaasenbrood, 2005; Perrenet and
Kaasenbrood, 2006). Perrenet et al suggested four levels, namely: execution; program;
object and problem. Armoni (2013) renamed the object level as algorithm; using this
Statter and Armoni (2016) evidenced impact on programming progress from high
school students who understood the level at which they were working at. Another
study using this framework reported teachers of K-6 students supporting learners to
move between the LOA levels in teaching programming in similar ways to how they
supported young students in learning how to write in English lessons (Waite, Curzon,
Marsh, and Sentance, 2018). Related to this work is the Abstraction Transition Tax-
onomy (ATT) (Cutts, Esper, Fecho, Foster, and Simon, 2012). Cutts et al. reviewed
university students use of vocabulary when solving peer instruction multiple choice
questions and suggested ATT as a discourse intensive teaching model of student un-
derstanding of programs, including three levels of language in programming: English,
CS Speak and Code. A clear recommendation of this research, which drew on situated
cognition, was to support learners to be able to transition across all levels.

2.2.3. The Block Model

Schulte (2008) suggests a holistic model of learner understanding of programming
called the Block Model. The Block Model has a horizontal dimension of Function
(split into text surface and program execution) and Structure. Its vertical dimension
has levels of atoms, blocks, relations and macro structure. Function is described as the
goals of the program. Using the Block Model, Schulte, Clear, Taherkhani, Busjahn,
and Paterson (2010) suggest teaching and learning sequences: micro sequences that
focus on one example, such as a single activity to implement an algorithm; and macro
sequences that focus on a course of many activities. They argue that there are lots
of possible learning tasks for reading and comprehending programs, such as tracing
examples of code or explaining the purpose of a piece of code in plain English. An
analogy cited by the authors is that the process of learning to program is like sewing
a patchwork quilt, with each cell in the model being one of the squares, and each
knowledge layer like the stuffing. As knowledge is acquired the quilt becomes more
robust and coherent, with novice programmers having a ’holey knowledge’ (Schulte
et al., 2010) or a ’holey quilt’ (Clear, 2012). The Block Model’s distinction between
a novice programmer’s understanding of the structural atomic detail of a program,
the code, the functional goals of the program, and the problem (Schulte et al., 2010)
resonates with the development of the LOA model described above, and has influenced
the development of the PRIMM model.

2.2.4. Neo-Piagetian theory

Lister (2011) proposed a model for learning based on Neo-Piagetian theory. The model
maps stages of programming development to pre-operational, operational and formal
operational reasoning. Further studies relating to the model suggest that there is
evidence that novices need more support to secure basic programming constructs,
requiring educators to assess learners’ stage of development and tailor teaching to
their needs (Corney et al., 2012; Teague and Lister, 2014). Lister argued that the
gap between academics and teachers needed to be bridged as otherwise computing
curricula would be developed that would not work in class. He called for practical

4

material to be created that was informed by research and incorporated learners’ stages
of development (Lister, 2016).

2.3. Teaching strategies

There have been many strategies for teaching programming developed over the years.
Caspersen (2018) considers that good strategies can focus on the following four ele-
ments: progression, examples, abstraction and patterns, and process. Here we look at
some of the most researched strategies.

2.3.1. Structured and less structured approaches

Much research associated with the teaching of programming has focused on pedagogy
and instructional approaches to teaching. Papert was very influential in the 1980s
(Papert, 1980); from his work we see instructional approaches based around open-
ended activities, through which students can develop a personal understanding of
newly introduced concepts or devices. This approach is still very popular with its
emphasis on creativity and play (Resnick, 2007, 2017) and underlies much of the
block-based programming environment design.

However, other research has highlighted the need for guided instruction to ensure
that learners circumnavigate a carefully constructed progression to develop a com-
plete mental model (Garneli, Giannakos, and Chorianopoulos, 2015; Grover, Pea, and
Cooper, 2015; Lye and Koh, 2014; Meerbaum-Salant, Armoni, and Ben-Ari, 2013;
Schulte, 2008). Grover et al. suggest that to foster deep learning a combination of
guided discovery and instruction rather than pure discovery and ’tinkering’ would
be more successful(Grover et al., 2015). The authors suggested that constructionist
activities should be combined with targeted conceptual learning for foundational con-
structs (Grover and Basu, 2017). This sentiment is echoed by a number of studies
with emerging evidence that some of the more difficult concepts such as initialisation,
variables and loops need to be explicitly taught (Hubwieser, Armoni, Giannakos, and
Mittermeir, 2014; Kirschner, Sweller, and Clark, 2006; Meerbaum-Salant et al., 2013).
In addition, researchers claim that learners’ cognitive load can be managed by more
closely controlling learning opportunities and learning experiences (Alexandron, Ar-
moni, Gordon, and Harel, 2014; Tsai, Yang, and Chang, 2015; Van Merriënboer and
Sweller, 2005).

2.3.2. Code reading vs code writing

Many authors have investigated the difference between code reading and code writ-
ing as instructional strategies. Back in 1987, Van Merrienboer and Krammer (1987)
found that an approach to teaching programming based on code reading was more
effective than the so-called Expert and Spiral approaches, which focused on top-down
code-writing and incremental program design respectively. Work by Lister and col-
leagues over many years has highlighted the importance of reading code and being
able to trace what it does before writing new code(Lister, Adams, Fitzgerald, Fone,
Hamer, Lindholm, McCartney, Moström, Sanders, Seppälä et al., 2004; Lister, Fidge,
and Teague, 2009). Comparing tracing skills to code writing, they demonstrated that
novices require a 50% tracing code accuracy before they can independently write code
with confidence (Lister et al., 2009; Venables, Tan, and Lister, 2009). Learning to
program is sequential and cumulative, and tracing requires students to draw on accu-

5

mulated knowledge to conceive a big picture; consequently novice learners should be
focused on very small tasks with single elements (Teague and Lister, 2014). Busjahn
and Schulte (2013) highlighted the importance of using the structure of code to infer
meaning and that the first step should be to make inferences about the execution of
the program (Busjahn and Schulte, 2013).

Another suggestion is a path of related tasks and understanding, a path diagram, to
support programming development (Lopez et al., 2008). Yet another approach com-
bined visualisation and tracing as a way of incorporating tracing into introductory CS
classes (Hertz and Jump, 2013), and another demonstrated that code-tracing activities
could help students learn to write both syntactic and semantic components of code
(Kumar, 2015). In addition, Parsons Problems can offer a a valid alternative activity
to code writing and develop useful skills (Denny et al., 2008).

2.3.3. Worked Examples

Studies related to code comprehension have also highlighted the use of worked ex-
amples to understand how variables change over time (Sudol-DeLyser, Stehlik, and
Carver, 2012). Gujberova and Kalas (2013) recommended a sequence of carefully
graded learning activities for primary students to improve programming and com-
putational thinking, including activities where learners read and interpreted each line
of code, as well as a stage for reading the entire program and predicting the outcome
(Gujberova and Kalas, 2013).

Another way of using worked examples is subgoal modelling, where meaningful la-
bels are added to worked examples to visually group steps into subgoals - thereby
highlighting the structure of code. Two higher education studies (Margulieux and
Catrambone, 2016; Morrison, Margulieux, Ericson, and Guzdial, 2016) used this strat-
egy with exemplar text, worked examples and problems. Both reports concluded that
those students given subgoals performed significantly better than those who had no
subgoals or who added their own subgoals.

2.3.4. Use-Modify-Create

Another approach used in the teaching of programming is Use-Modify-Create (UMC),
a teaching framework for supporting progression in learning to program (Lee, Martin,
Denner, Coulter, Allan, Erickson, Malyn-Smith, and Werner, 2011). Learners move
along a continuum from where they first use programs made by someone else to finally
create their own programs. Between these points they modify work made by someone
else so that the modified material becomes ‘theirs’. This work has some history, as it
builds on a range of related work (Caspersen, 2018), including the ‘call before write’
suggestion by Pattis (Pattis, 1990) and ‘use-extend-create’ (Caspersen and Bennedsen,
2007).

This review gives an indication of the wealth of suggestions for teaching program-
ming that have been suggested. Still other approaches include annotation (Su, Yang,
Hwang, Huang, and Tern, 2014) and live coding (Rubin, 2013). In this paper we add
to this body of research by suggesting PRIMM as a practical strategy that teachers
can use to structure lessons and effectively teach programming. It builds primarily on
the Use-Modify-Create research but is influenced by the need for language and talk to
aid understanding.

6

3. Vygotsky and socio-cultural theory

Social constructivism, in particular the work of the Soviet psychologist Vygotsky, can
frame our understanding of novice programmers and their learning, and help us to
develop effective pedagogical strategies, drawing on this interpretation of the learning
process. Vygotsky reoriented learning theory from an individualistic to a sociocultural
perspective with his sociocultural theory (SCT) (Kozulin, 2003).

3.1. Mediation

A key element of Vygotsky’s work concerns mediation (Wertsch and Tulviste, 1992),
which includes both the different kinds of mediational tools adopted and valued by
society as well as the appropriation of mediational tools and how they are integrated
into cognitive activity during the processes of an individual’s development (Shabani,
2016). Such ‘tools’ are appropriated to provide mediation within the learning process.

Vygotsky proposed that higher mental processes were functions of mediated activity
and that there were three major classes of mediators: material tools, psychological
tools (sometimes called signs and symbols), and other human beings (Kozulin and
Presseisen, 1995). Psychological tools are defined as : “language, different forms of
numeration and counting, mnemotechnic techniques, algebraic symbolism, works of art,
writing, schemes, diagrams, maps, blueprints, all sorts of conventional signs, etc. 5. ”
(Vygotsky, 1981, p.140). Through mediation, learning is ‘ ‘a process of apprenticeship
and internalization in which skills and knowledge are transformed from the social into
the cognitive plane” (Walqui, 2006, p.160).

3.2. The Zone of Proximal Development

In the context of school learning, Vygotsky states that a child’s development within
a zone of proximal development (ZPD) involves social interaction, dialogue, and me-
diated activity between learners and with their teachers (Vygotsky, 1978). According
to Vygotsky, the zone of proximal development “is the distance between the actual
development level as determined by independent problem solving and the level of po-
tential development as determined through problem-solving under adult guidance or
in collaboration with more capable peers” (Vygotsky, 1978, p.86). The term proximal
(nearby) indicates that the assistance provided goes just slightly beyond the learner’s
current competence complementing and building on their existing abilities. The ZPD
has become synonymous in the literature with the term scaffolding. However Vygotsky
did not use the term in his writing – it was introduced by Wood, Bruner, and Ross
(1976):

“Discussions of problem solving or skill acquisition are usually premised on the assump-
tion that the learner is alone and unassisted . . . More often than not, it involves a kind
of ‘scaffolding’ process that enables a child or novice to solve a problem, carry out a task
or achieve a goal which would be beyond his unassisted efforts. ”

.
Brown, Ash, Rutherford, Nakagawa, Gordon, and Campione (1993) suggest that

the active agents within the ZPD “can include people, adults and children, with var-
ious degrees of expertise, but [they] can also include artifacts such as books, videos,
wall displays, scientific equipment, and a computer environment intended to support
intentional learning”(p. 191).

7

3.3. Language

A key aspect of Vygotsky’s sociocultural theory was that language was a central
form of mediation that enabled thinking and internalisation of concepts to take place:
“Thought is not merely expressed in words, it comes into existence through them” (Vy-
gotsky, 1962, p. 125). Vygotsky identified different types of talk including inner speech
as well as talk that forms part of social interaction. For Vygotsky, social interaction is
the basis of learning and development (Walqui, 2006). Through artefacts existing in
the social plane that are shared by learners, we are able to use language to understand
them and thus internalise that understanding over time.

3.4. Vygotsky and pedagogy

Vygotsky’s work is highly relevant to our work with classroom teachers as it was di-
rectly concerned with whole-class teaching in public schools (Guk and Kellogg, 2007),
and relates to the social transformation that takes place through schooling (Daniels,
2016). Referring to science teaching, Giest and Lompscher (2003) describe three pro-
gressive stages for teaching that apply equally to programming: creating conditions
for learning within the zone of actual performance, so identifying what the students
can and cannot do, through tasks, then facilitating learning through tasks carefully
situated within the zone of proximal development (Vygotsky, 1978) which enable the
student to carry out more complex cognitive tasks than they would be able to do
on their own, with the support of a ‘more knowledgeable other’ (MKO) and finally
moving into the stage where the student is able to work independently and reach their
own learning goals. However, according to Giest and Lompschrer, this approach can
put high demands on the teachers’ ‘educational and psychological competence’.

In their review of the theories of mind underpinning computer science education re-
search, Tenenberg and Knobelsdorf (2014) noted the historical focus on individualistic
cognitive theory with a trend over the last 20 years towards incorporating a socio-
cultural framing. Sociocultural approaches have strongly influenced a range of recent
computer science education work (Bennedsen and Eriksen, 2006; Cajander, Daniels,
and McDermott, 2012; Ryoo, 2013), and other research has specifically referenced or
used Vygotsky’s ZPD (Basawapatna, Repenning, Koh, and Nickerson, 2013; Kotsopou-
los, Floyd, Khan, Namukasa, Somanath, Weber, and Yiu, 2017), so the influence of
SCT is distinctly becoming prominent in computer science education. Recently Nadia
Kasto’s doctoral thesis drew on Vygotskian theory in a study of novice programmers
(Kasto, 2016). Kasto describes Robin’s learning edge momentum (Robins, 2010) as
showing the closest influence of Vygotsky in computer science education research.

3.5. A framework for teaching programming

There have been calls to take a more sociocultural approach within computer science
education and programming (Machanick, 2007; Tenenberg and Knobelsdorf, 2014)
and particularly with regards to the role of language in teaching computer science
(Diethelm and Goschler), but otherwise this is a largely unexplored area of research.
Just as in science teaching, different ways of talking in class about concepts lead to
internalisation of the necessary concepts (Leach and Scott, 2003), in computer science
education we need to use talk to help students to internalise the difficult concepts
they face in programming. In addition, by understanding the process of appropriation
better we will be more able to support novice programmers to acquire both a better un-

8

derstanding of programming and confidence in their ability to carry out programming
tasks.

From sociocultural theory we can draw on three key principles that can guide the
teaching of programming:

(1) Mediation through language. When learning to understand how programs
work, students should be encouraged to discuss with each other through a social
construction of knowledge. This can be through pair programming, or through
collaborative tasks such as talking about segments of program code to identify
their function. Teaching should facilitate focused discussion around programming
constructs and concepts.

(2) Learning moves from the social plane to the cognitive plane. Using
starter programs and teaching the reading of code means that the program code
exists on the social plane first, before being understood internally by the student.
Programming tasks should be carefully scaffolded so they are within the zone
of proximal development of the student. Gradually more complex programming
tasks involving independent problem solving and creativity will be possible by
students as the understanding becomes internalised.

(3) The role of the ’more knowledgeable other’(MKO) in ZPD. Students
need teachers, as More Knowledgeable Others, to show them (model) how to
solve a problem. Students working together can be paired so that one peer is the
More Knowledgeable Other. The materials and the structure are both mediating
activity in Vygotsky’s terms, but should be designed to be within the ZPD of
the learners. This requires a detailed understanding of progression and which
concepts are easier or harder for students (Wiegand et al., 2016).

This framework can be seen in Figure 1 with suggestions for implementation in
Table 1.

Figure 1. Framework for design of programming lesson

Drawing on this framework we have developed PRIMM, outlined in the next section.

9

Table 1. Implementation of key principles

4. PRIMM

PRIMM is a method of teaching programming that counters the known problem of
novices writing programs before they are yet able to read them, and incorporates
discussion and investigation of sample code through scaffolded tasks. The PRIMM
approach is a process that teachers can use to structure a lesson with five elements:
Predict, Run, Investigate, Modify and Make:

• Predict Students discuss a program and predict what it might do, drawing or
writing out what they think will be the output. At this level, the focus is on the
function of the code.

• Run Students run the program so that they can test their prediction and discuss
in class

• Investigate The teacher provides a range of activities to explore the structure
of the code; this involves activities such as tracing, explaining, annotating, de-
bugging, but with the scaffolding provided by an existing solution

• Modify Students edit the program to change its functionality via a sequence of
increasingly more challenging exercises; the transfer of ownership moves from the
code being “not mine” to “partly mine” as students gain confidence by extending
the function of the code

• Make Students design a new program that uses the same structures but that
solves a new problem (i.e. has a new function)

PRIMM draws on existing research in computer science education, particularly four
areas of programming research: Use-Modify-Create (Lee et al., 2011), tracing and read-
ing code before writing (Lister et al., 2004), the Abstraction Transition Taxonomy
(Cutts et al., 2012) and the Block Model (Schulte, 2008). In PRIMM, students tran-
sition from the program or code level to the execution level and may also summarise
in English to the problem or with CS speak to the algorithm. During the run stage
they check to see if their prediction was correct using English, CS speak and code as
they accommodate or assimilate their understanding with language and vocabulary
becoming the oil to facilitate the transitions.

10

Figure 2. A predict activity from one of the first lessons

Figure 3. A predict activity from a more advanced lesson

4.1. A PRIMM lesson

In this section, we briefly describe a PRIMM lesson or sequence of lessons, and the
materials that exemplify this. The intention is that teachers can develop their own
PRIMM-like materials at an appropriate level for their students.

4.2. Predict and Run

At the beginning of a PRIMM lesson, students are given a short program on the board,
or on paper, to look at in pairs. The task is for them to write down the output of the
program. Most of our examples use Python; two examples are shown in Figures 2 and
3.

The teacher discusses the students’ answers with the class, and students then down-
load code and run to check their prediction. It is important that they do not copy the
code as this is a completely different process. Access to a shared area where starter
programs are stored is important, and multiple predict activities can be used.

4.3. Investigate

In this phase of the lesson or sequence of lessons, students are asked code comprehen-
sion questions about the same program or snippet of code. These questions pick out
certain aspects of the program to develop understanding. Developing good questions
in this section requires a good understanding of programming and student miscon-
ceptions, and the Block Model (Schulte, 2008) can help to structure questions. For
example, students may be asked a question about the execution of the whole program,
which requires an understanding of the underlying algorithm and program execution.
In the Pizza example shown in Figure 3, the student may be asked what happens if
the user does not add any toppings. In addition questions can be asked which enable
the students to discuss individual snippets of codes, such as that shown in Figure 4.
Discussion of the question should ideally take place in pairs or groups to enable stu-

11

Figure 4. Sample question in the investigate phase

Figure 5. The Block Model (Schulte, 2008)

dents to develop the vocabulary they need to talk about the program (Cutts et al.,
2012).

4.4. Modify and Make

In this phase of the lesson the learners are able to build on the existing program
to modify and create new programs. Carefully structured activities allow progression
from simple changes to more substantial functional changes to the program. Having
an existing program in place gives the student confidence and something to build
on. Sometimes the modify task is to remove obvious glitches with the program. For
example, following the Pizza example in Figure 3, a modify task may to be to improve
the program so that the output does not end with “and”. Subsequently, in the make
phase, the students will be asked to create a new program from a problem description,
drawing on what they have learned about loops and string manipulation from the
previous program (Cutts et al., 2012).

PRIMM could take one lesson for a simple concept, or there could be iteration
around parts of PRIMM, or a number of lessons might be needed. It offers the teacher
a structure to support students in gaining an understanding of core programming
concepts.

We developed resources to exemplify how PRIMM might work in the classroom. The
resources are not themselves PRIMM, but are the content that illustrates to teachers
how the PRIMM elements work. The resources were developed by the first author and
used by teachers.

In summary, PRIMM is a way of structuring programming lessons that focuses on:

• Reading code before writing code – starting from code that is “out there”
• Working collaboratively with learners to talk about programs – focused discourse

12

and interaction
• Reducing cognitive load by unpacking and understanding what program code is

doing – small, scaffolded steps within learners’ ZPD
• Gradually allowing learners to take ownership of programs when ready by moving

the learner on to what they can do on their own

In order to evaluate PRIMM we carried out a study with the following two research
questions:

• RQ1: Does the PRIMM approach impact on learner outcomes?
• RQ2: To what extent do teachers find the PRIMM approach an effective method

to use in school?

The study is described in the next section.

5. The study

5.1. Research design

The aim of the study was both to consider the effectiveness of PRIMM in the teaching
of programming and to increase our understanding of its impact on learning.

To answer the first research question the plan was as follows:

• Carry out a quasi-experimental study in a number of schools, assessing program-
ming knowledge before and after several months’ of PRIMM lessons

• To gather data from teachers (qualitative) about their experience of the approach
and its impact on student learning

To answer our second research question our plan was:

• To gather data from teachers (qualitative) about the impact of PRIMM on their
confidence as teachers, and their use of the PRIMM resources

We employed a type of quasi-experimental design known as the non-equivalent con-
trol group post-test design (Campbell and Stanley, 1963). The specific research design
is a post-test design but it lacks the random assignment. Following Campbell and Stan-
ley (1963), the treatment was administered by the school system and the untreated
classroom was the control group.

In accordance with this design, the control group consisted of students who were to
take the same number of programming lessons, covering the same topics, but using the
teaching method normally used in the school.The experimental group included stu-
dents who learned computer programming from teachers who adapted their teaching
methods according to the PRIMM approach. To ensure that students did not differ
significantly in their computer programming ability, both groups were pre-tested be-
fore the start of the intervention. Control groups were not available in all of the schools
in the study for practical reasons.

5.2. Participants

Teachers were recruited to participate in the study via a number of channels, including
email lists, forums and social media. A requirement was made for teachers to attend a
full day’s training, and they had to identify in advance groups of students to be used for

13

Table 2. Teaching phases, highlighting the students in our study.

England & Wales USA Student Age
Phase Key Stage Year Group Pupil Grades (Years Old)

Early Years Early Years 4-5
Primary Key Stage 1 Year 1 Kindergarten (K) 5-6

Year 2 Grade 1 (K1) 6-7
Key Stage 2 Years 3 to 6 Grades 2 to 5 (K2-K5) 7- 11

Secondary Key Stage 3 Years 7 to 9 Grades 6 to 8 (K6-K8) 12-14
(middle school)

Key Stage 4 Years 10 to 11 Grades 9 to 10 (K9-K10) 15-16
Key Stage 5 Years 12 to 13 Grades 11 to 12 (K11-K12) 17-18

the study. Ethical processes were adhered to and teachers consented to our use of data
for all aspects of the study. Teachers had to ensure that they had the school principal’s
permission to work with the students, and they were formally released from school for
the training. During the training day, teachers worked with the PRIMM resources and
their involvement as participants was clearly explained. 14 teachers were recruited, of
which 13 continued to participate.

Teachers were given full sets of materials, including starter tasks, presentations,
worksheets, starter programs and answers, for 10 lessons (including extension mate-
rial) covering the basic programming constructs of sequence, selection and iteration in
Python.

5.3. Student participants

The participants in the study were students at key stage 3, in years 7-9 (equivalent to
Grades 6-8). See Table 2 for ages of UK grades. The number of students per teacher
varied: some classes were very small with only 15 pupils others were large with over
30 pupils. Some teachers had multiple classes, for example in School 2. In total, 493
students were included in the experimental group and 180 students were part of the
control group.

5.4. Study materials

We had previously designed and implemented a short pilot study to trial the PRIMM
materials. This involved 6 teachers and approximately 80 students over 4-7 lessons,
and was followed by individual interviews with all the teachers to consider their views
of PRIMM and the materials. Our analysis of the interviews enabled us to further
develop a set of materials, and to devise appropriate research instruments for the
subsequent main study. For the pilot we had developed PRIMM-style worksheets for
teachers to use with the intention of teachers developing them further and becoming
co-creators of PRIMM materials. The pilot demonstrated that we needed to provide
more comprehensive materials, and that teachers had limited confidence and time to
develop their own resources in the PRIMM style.

For this study, we produced a set of ten complete lessons, with starter exercises,
presentations, starter programs and worksheets (all editable by the teachers) covering
the topics of sequence, selection and iteration for beginner programmers 1. These were

1Now available at https://primming.wordpress.com/2018/08/23/primm-materials-2018/

14

Table 3. Participating teachers and classes (those with * were not included in analysis)

ID School Teacher Year Students Students Interviewed
gender group in PRIMM in control

trial group
1 Mixed State M 8
2 Mixed State F 8 114 103
3 Girls State F 9 45 36 Y
4 Boys State M 9 43 Y
6 Mixed State M 8 36 Y
7 Mixed State F 7 25 Y
8 Mixed State M 9 38 Y
9 Mixed State M 8 and 9 23
10 Mixed State F 8 and 9 21 15 Y
11 Girls Independent M 8 46 Y
12 Mixed State M 8 and 9 45 Y
13 Mixed State M 9 23 26
14 Girls Independent M 9 34 Y

TOTAL 493 180 9

shared with the teachers on the first training day.

5.5. Research instruments

5.5.1. Pre and post test

The pre-test was designed by one of the researchers and tested students’ basic under-
standing of programming since they had limited experience with this subject. In total,
ten programming tasks were given to students in the pretest and the total score was
ten. The post-test was designed by the same researcher and included 7 programming
tasks covering the topics in the PRIMM resources (selection, loops etc.). The total
mark of the test was 11 points. To clarify the design of our tests, we report here more
details regarding some of the test characteristics listed in Margulieux, Ketenci, and
Decker (2019).

The pretest included seven multiple choice questions, one code explaining ques-
tion, one code tracing question and one code testing question. The posttest included
one Parson’s puzzle-style problem question (1 point), one code explaining question
(2 points), two code writing questions (2 points), two multiple choice questions (1
point each), and one fill in the gaps question (2 points). Table 4 depicts the de-
scriptive statistics for each test and each group. Content validity was ensured by the
researchers and other experts reviewing the tests and agreeing that the items of the
test measured the intended concepts (Effendi, Matore, and Khairani, 2015).

5.5.2. Interview design

Interview questions were trialled during the pilot study in order to inform this study.
This enabled us to select questions that informed our research questions effectively.
A semi-structured interview design was used, and questions were grouped into four
sections:

• Section A General information about sessions with PRIMM
• Section B Impact of PRIMM on students programming skills
• Section C Impact of PRIMM on teachers confidence

15

• Section D Use of PRIMM resources and the future

5.6. Method

The pre-test was sent by email to all the computing teachers who administered the
test on paper with their students. The teachers were responsible for marking their
students’ responses to the test. Specific marking guidelines were sent to the teachers
along with the pretest. We should note here that it was quite easy to mark these tests
as all the questions were multiple choice and each correct answer contributed one mark
to the final score. After this, the teachers continued teaching the programming course
based on their usual teaching approach or the PRIMM method depending on whether
they taught the control group or the experimental group.

At the end of the course and after almost six months of programming instruction,
we administered the post-test to both groups again. The post-test was administered in
an online form and the link to the test was emailed prior to the teachers. Some of the
teachers marked their students’ post-tests as done in the pre-test but others preferred
to let the researchers mark the tests. Again, we created specific marking guidelines for
the test which were sent to all teachers to ease the assessment procedure ensuring a
valid and reliable way of marking; we moderated a sample of the teachers’ marking.
In total 12 of the teachers provided data for use in the quantitative part of the study.

At the end of the study and when the post-tests had been completed, teachers
submitted their journals, were invited for interview and invited to an online focus
group.

5.7. Threats to Validity

Quasi-experimental designs have some validity concerns that researchers must take
into consideration. Threats to internal validity include history, maturation, testing,
instrumentation, statistical regression, selection, attrition, and diffusion. Although we
cannot say much about history and therefore the extraneous variables that may have
influenced the results, the maturation was controlled by having students of the same
age and class in both groups. Additionally, to control for the selection bias we included
a pretest at the start of the study which tested students’ ability in programming before
the intervention took place. Testing and instrumentation were controlled by not having
the same questions in the pretest and in the post-test. The pretest was used to ensure
that the two groups did not differ significantly before the intervention and thus the
statistical regression is not a problem in this design.

Concerns about diffusion were controlled as we did not have any evidence of com-
munication between the control & experimental group, and attrition was minimal.

6. Data analysis

6.1. Quantitative

To examine if PRIMM had any effect on students’ learning, we compared the post-test
score of the experimental group with that of the control group. The data comprised the
students’ pre-test and post-test scores as well as their identifying class and teacher.

16

SPSS2 was used for the data analysis. Students’ data were grouped depending on
whether they belong to the experimental or the control group. Before employing any
statistical test, we checked if the dependent variable was normally distributed. The
test that we employed for this was the Shapiro-Wilk test for normality. The results
indicated that our dependent variable (pre-test and post-test scores per group) was
not normally distributed in any case. Therefore, the test we employed for comparing
differences between our two independent groups was the nonparametric Mann-Whitney
U test. We first used this test to examine if our two groups had significant differences
in the pre-test score. As soon as this pre-condition was tested and assured we then
moved on to compare the two groups’ post-test scores. The results of this test are
described in Section 7.1.

6.2. Qualitative

Nine of the thirteen teachers were interviewed as shown in Table 3. The selection of
those interviewed was based on a spread of male/female, ages taught and mixed and
single sex schools. 3 of the 4 female teachers (75%) & 6 out of 9 male teachers(66%)
were interviewed. The boys only school teacher was interviewed, all 3 girls schools’
teachers and 5 of the mixed schools’ teachers were interviewed. The only year 7 teacher,
4 of the year 8 (50%) and 5 of the year 9 (55%) teachers were interviewed. All interviews
were conducted online, were audio recorded and transcribed. The length of time of the
interviews varied from 26 minutes to 68 minutes. Four took between 26 and 36 minutes,
three between 46 and 56 minutes and one took 68 minutes.

Two of the authors worked on the coding process. A thematic qualitative data
analysis (QDA) approach was used to analyse the transcribed interviews and outcomes
of tasks based on the methodology detailed by Kuckartz (2014). NVivo3 was used to
support the process of coding text segments.

In the second study we started by coding inductively from the interviews (Mayring,
2000). The overall objective at this point was to create main themes which would
lead to a structure for reporting which would not be pre-determined by any initial
constraints. One author coded two of the interviews adding and amending categories
and sub-categories inductively. After this first pass of coding, we reviewed and revised
the resultant categories to confirm they matched the data coded. Two interviews
provided approximately 1/5th of the overall transcripts in line with recommendations
from Kuckartz (2014) of 10 to 20% for the first pass. Following this, all interviews were
coded. Emergent patterns were recognized and new codes created to hierarchically
group codes. This process was repeated across the categories creating, merging and
splitting codes inductively (Kuckartz, 2014; Mayring, 2000). Once the more elaborate
category system had been created, we checked that all data adhered to the new coding
structure and recoded as necessary (Kuckartz, 2014). A second researcher then coded
three of the nine interviews (33% of the text) a second time, with a Cohen’s Kappa
reliability score of 0.75, which is considered as good agreement between researchers.

All teachers were offered the opportunity to take part in an online focus group
to discuss general experiences. The focus group was audio recorded, transcribed and
coded. Teachers 3,8 and 14 took part. Teachers 2,4,6,7,8,10, 12 and 14 also provided
written notes of evaluation of their delivery of PRIMM lessons. These have also been
coded. All interviews and focus groups were completed in the spring of 2018.

2https://www.ibm.com/analytics/spss-statistics-software
3https://www.qsrinternational.com/nvivo

17

7. Results

7.1. Results - Quantitative

The first section of the results presents the quantitative findings of the study. All
classes as shown in Table 3, except those of Teacher 1, were included in the quantitative
analysis. Teacher 1’s classes were not included as he had used a local school test rather
than the study post-test.

Table 4 depicts the descriptive information for the control and the experimental
group for the pretest and the post-test.

Table 4. Descriptive statistics

Control Pretest Posttest Experimental Pretest Posttest

Mean 4.58 2.575 Mean 4.89 3.284
Median 4.0 2.0 Median 5.0 3.0
Variance 3.652 4.803 Variance 4.473 6.300
Std. Deviation 1.911 2.1916 Std. Deviation 2.115 2.510
Skewness .548 (se=.181) 1.237 (se=.181) Skewness 0.88(se=.110) .873(se=.110)
Kurtosis .301 (se=.360) 1.314 (se=.336) Kurtosis -.389(se=.220) .301(se=.220)

7.1.1. Differences before the intervention

As Table 4 shows, in the pretest the mean and the median score for the control group
are 4.58 and 4.0 respectively while for the experimental group the scores are 4.89 and
5.0. To test if there are significant differences between our two groups at the beginning
of the intervention, the Mann - Whitney test was employed since the data were not
normally distributed. The null hypothesis that was tested was the following:

H01: there is no significant difference between the scores of the experimental and the
control group in the pretest

The results in Table 5 indicate that the students’ performance on the pretest did
not differ significantly (p>.05) and, thus, we could not reject the null hypothesis (Z=-
1.891, p>.05).

Table 5. Mann-Whitney - Comparing Control & Intervention Groups - Pretest & Posttest

Pretest Posttest

Mann-Whitney U 40195.0 36822.5
Wilcoxon W 56485.0 53112.5
Z -1.891 -3.392
Asymp. Sig.(2-tailed) .59 .001

7.1.2. Differences after the intervention

Table 4 indicates that in the post-test, the experimental group (M=3.284, MD=3.0)
scored higher than the control group (M=2.57, MD=2.0). To investigate if these dif-
ferences are statistically significant, we test the following null hypothesis:

H02: There is no significant difference between the score of the experimental and the
control group in the post-test.

18

The Mann and Whitney test (Table 5) employed showed that there is a statistically
significant difference in the score between the control and experimental groups for all
students in favour of the experimental group. This suggests that the experimental
group scored statistically significant higher than the control group in the post-test
tasks (Z=-3.392, p<.05, r=.13) and, thus, we can reject the null hypothesis.

The mean ranks are shown in Table 6 and show that the control mean rank declined
from pre to post test, whereas the mean rank increased for the experimental group.

Table 6. Ranks - Pretest & Posttest

Pretest Posttest
N Mean Rank Sum of Ranks N Mean Rank Sum of Ranks

Control 180 313.81 56485.0 180 295.07 53112.5
Experimental 493 345.47 170316.0 493 352.31 173688.5
Total 673 673

In summary, these results indicate that the control and experimental groups were
comparable before the study, and that after the intervention, the experimental group
scored higher on the post-test than the control group. This indicates that the PRIMM
lessons had a favourable impact on learner outcomes. We draw on the qualitative
results to further support this conclusion.

7.2. Results: qualitative

Through an iterative coding process seven key themes emerged from the data, as shown
in Table 7, which shows the themes and the % of coded segments for each theme. Here
we summarise and illustrate the themes and highlight the teachers’ perspectives in so
far as they enable us to understand the impact of the PRIMM method.

Table 7. Summary of codes

Theme % segments coded to this theme

1 Implementation of PRIMM in class 10%
2 Skills needed by learners 4%
3 Stages of PRIMM lessons 21%
4 The impact and particular aspects of PRIMM 26%
5 Differentiation and groups of learners 12%
6 Adaption and future use of PRIMM 13%
7 Feelings of motivation of teachers & learners 14%

7.2.1. Implementation of PRIMM in class

The codes in this theme related to how the study was implemented in class by teachers
and included the number and age of learners in the study and any control groups,
number of lessons taught, PRIMM topics taught, length of PRIMM topic (lesson),
Pre & Post-test information, the teachers involved in the study and some teachers
mentioned how programming was taught before.

19

7.2.2. Skills needed by learners

Teachers were asked what skills they thought were most important for learners to be
able to program. Teachers responses are shown in Table 8. All teachers mentioned
some form of programming concept, construct or technical area of expertise and four
teachers mentioned problem-solving or some aspect of the process of problem-solving
such as testing or knowing when to use programming constructs. For example, Teacher
8 answered:

“They need to develop the ability to take the problem description, and turn it into working
code. That’s a process. That’s not specifically, they’ve got to learn lists, or they’ve got to
learn selections. I think number one is that they have got to be able to be confident taking
a problem and then arriving at eventually a solution for a process.” (Teacher 8)

Due to our focus on the structure of the PRIMM process in this paper, teachers’
perspectives on particular concepts and skills will not be discussed in depth here.

Table 8. Summary of skills learners need to be able to program by teacher ordered by Year Group and

Number of topics

Concepts Teacher 7 10 11 6 12 4 14 8 3
& constructs Yr7 Yr8 Yr8 Yr8 Yr8 Yr9 Y9 Yr9 Yr9

Data Structures X X X X X X X
Flow of Control X X X X X X X X
Input & Output X X X X

Syntax & Fluency X X
Functions X X X

Files Systems X
Problem-solving skills X X X X

Understand Vocabulary X
Experience of blocks X

7.2.3. Stages of PRIMM lessons

In their interviews, all 9 teachers talked about every stage of the PRIMM lesson, with
the most frequently mentioned stage being Predict with 28% of the coded segments.
Followed by, Modify with 22%, Investigate with 21%, Make 12% & Run with 11%.

There were many comments about the advantages of having a structure to the
lessons by following different stages of PRIMM, for example:

“The PRIMM, the reading and then the running and then the investigation was a really
nice structure for them to follow. And because they’re the same every week, they could
see what was going to be coming.” (Teacher 6)

Teacher 11 highlighted the impact of predict on all his students (all girls):

“Predict was really successful with all students at all levels, because . . . during the sharing
stage of the process, those that haven’t really picked it up, because they didn’t quite get the
logic or they weren’t such good readers, would feed off other people’s ideas and develop
their own thoughts, and you could see the impact of it really clearly as a teacher” (Teacher
11)

Six teachers alluded to a ‘modify ceiling’, indicating for a variety of reasons that
some learners did not get beyond the modify part of the lesson:

“I think a lot of kids didn’t get on to make and that’s why I made the sessions two lessons

20

Table 9. Examples of the sub-themes emerging around the impact of PRIMM

Sub-theme Example
Progress made I think it’s the whole PRIMM approach. I think it was the predict
by learners and the run and not just the modify, it just allowed them to get

that concept a lot faster. (Teacher 10)
Speaking and There was certainly more active talking and planned talking
Listening about the programming because of the way that the questions

are worded in the worksheets and the resources (Teacher 6)
Concepts and When I taught functions prior to using PRIMM, I’d have to
Key Skills break each and every single part down. But with the PRIMM lessons

the way it was structured, it was very easy to follow, and I
think the kids understood it quite quickly as well. (Teacher 12)

Task Design ‘Modify’ was reinforcing the understanding that they’d reached
to get to that point ... the student is armed with much more

knowledge when they attempt a task - it’s all in the immediate
confines of that lesson (Teacher 14)

Expectations of We’ve always got the learners to explain and to comment their
students code, but here it was done first. Right from the beginning it

was, no, you need to be able to read this, and the expectation
was far, far higher. (Teacher 6)

Starter programs ...having some code they could just run, and it gets it basically
working, encourages them a little bit more than having to type
it all in from scratch ... They’ve got a starting point from
which they then could develop. (Teacher 8)

long to make sure that enough students got on to make. But even then, many students
didn’t get on to make.” (Teacher 4)

Here we can see the distinction between the structure of the PRIMM lessons which
teachers liked, and some of the content of the materials, which for some classes were
rather advanced and lengthy. Amongst our schools there was a wide range of types of
schools and students’ prior experience, despite our attempts to control for this in study
design. In addition, some schools have more hours of computing each week which was
another factor affecting the way that the content within the materials was received.

7.2.4. The impact of aspects of PRIMM

Six sub-themes emerged in the coding: progress made, speaking and listening, concepts
and key skills, task design, expectations of students and starter programs. These are
exemplified in Table 9.

Several teachers described how previously students had been taught to write code
straight away whereas reading code first had really assisted the middle and lower ability
students. Other teachers described the routine nature of the PRIMM lessons giving
students confidence and familiarity with a process. Teachers were generally positive
about the progress made by students, and were aware that the material used within
the PRIMM structure generated high expectations:

“I mean we’re expecting a lot from the kids in those 14 hours, those 14 sessions. And for
some of the kids, they coded functions, if statements, nested if statements, while loops,
concatenation, casting. To get that in 14 hours in Year 9 is remarkable.”(Teacher 4)

All teachers mentioned a speaking and listening aspect of PRIMM which was coded
into different sub-themes around pupil-pupil communication, teacher-pupil communi-
cation, vocabulary, social aspects and the quality of the talk. Language was a very
frequent topic in the interviews.

21

All teachers mentioned some form of paired and group talk. This talk was sometimes
an implicit aspect of the structure of PRIMM stages or resulted from the specific
questions in the content of the PRIMM resources. Talk was often linked to collaborative
work:

“I noticed a big difference in terms of the girls collaborating with each other and trying
to sort of out each other’s problems. Usually that’s been confined to one or two girls who
feel quite confident, but with PRIMM with the tasks that they were doing, they always felt
that they were closer to a solution that they might necessarily have felt in the past when
I’ve taught them.... So they were actively engaging in helping each other and looking at
each other’s code and making suggestions” (Teacher 14)

One teacher mentioned how content repeated across lessons supported learning,
another that the pace of lessons was maintained by the repetition of content across a
sequence of lessons. Jigsaw puzzle pieces was suggested as an analogy by another:

“So sometimes the third lesson would be the make section and during that section, I was
teaching them how to magpie bits of code. So to see where the solution had worked in a
similar domain and then copy and paste parts of it to almost use it like a jigsaw puzzle
to put together a solution to a problem, and encourage them that that was okay. They
could go and find bits of different problems, borrow it and put it together.” (Teacher 7)

Five of the teachers liked the gradual addition of complexity and chunking up the
learning. Teacher 14 explained:

“PRIMM gave them the opportunity to edit code and enjoy success very quickly, and that
fed onto the next bit when you’re looking at the next bit of code and how you add some
more complexity to it... It starts off as a small snippet, which they understand, they get,
and then they develop it.” (Teacher 14)

He went on to compare PRIMM with the way he used to teach programming:

“I’d give them the whole code with conditions in there straightaway, and that might work
for one or two of them, but be a sea of confusion for a lot of others. PRIMM introduced
them to programming in a much more systematic and measured way.”(Teacher 14)

7.2.5. Differentiation and groups of learners

Differentiation refers to the way that teachers adapt their teaching to support different
groups of students particularly those who are lower ability or higher ability. Within
this theme, there were a variety of approaches to differentiation mentioned. Some
examples are given below to summarise this theme, but the striking element of data
coded here is how much the teachers reflected on their teaching of programming and
the adaptations needed to reach students of a range of abilities.

Teachers mentioned the use of a wide range of different methods to differentiate:

“I think this (PRIMM) has helped me to think more creatively about being more inclusive
and adapting, for those lower ability students.” (Teacher 7)

The open-ended nature of the content was highlighted as being very important,
particularly for higher ability students. This was mentioned by teachers 3, 8 and 12.
Teacher 12 explained:

“the differentiation is already there. So, not all kids have to complete every single task.
They can be doing the first couple of tasks. And if their ability allows them to move
forward, that’s great. But if that’s where they get to, that’s also great.” (Teacher 12)

Eight teachers mentioned they supported learners with explanations through re-

22

sponses to questions or small group coaching and through modelling what they re-
quired students to do. Here teachers were explicitly using their own expertise, as a
‘More Knowledgeable other’ (MKO) (Vygotsky, 1978).

The role of the learning support assistant (LSA) to also help individuals and working
with small groups was highlighted:

“it was differentiation through outcome and support, so I spent more time, and the LSA
spent more time with those people, explaining. I’d also have small groups together towards
the end, and we were getting a bit more meaty programming. And with those small groups,
I would run through the program with them.” (Teacher 7)

This teacher also explained how modelling, motivation and linking to prior learning
were required to differentiate the make stage:

“I think it (differentiation at the make) was probably through modelling and through
encouragement. How would I characterise that? Using what they’d already done and could
understand and applying it to a new problem, I guess. Trying to make it transparent that,
just because you solved this problem this way, there were elements of that solution that
could fit this new solution, and trying to make that really transparent and clear.” (Teacher
7)

Reading and writing skills were both mentioned by teachers. One teacher reflected
on the relationship between reading and programming:

“If they can’t read, then they’re not going to be able to access what they need to do or
realise that this word means something and it needs to obviously go into the computer in
a particular way.” (Teacher 6)

Teacher 4 linked the answering of investigate questions to familiarity with compre-
hension activities in other subject:

“And also, I found some kids were very happy going along through the Word document
and filling in the gaps and getting all the right answers because they kind of felt it was
similar to comprehension that they might do in say, Geography, or another subject where
you do comprehension.” (Teacher 4)

7.2.6. Adapting & Future use of PRIMM

All teachers talked about how they adapted and used PRIMM in their classroom, with
over 147 coded segments including the practical aspects of classroom management,
differentiation, impact and aspects of PRIMM, and 42 coded segments focusing on the
future use of PRIMM.

Changes and future uses included changing wording of tasks, PRIMMing other con-
cepts and constructs, adding new questions for the investigate stage, using PRIMM
with other year groups, adapting resources for exercise books and other formats,
PRIMM being used by more teachers in their school, adding a hook or overarch-
ing context, increasing the design aspects of activities, simplifying tasks for younger
and lower ability students.

Teacher 7 was very keen to have a Pre-PRIMM vocabulary stage, explaining:

“ So I think an introduction section with vocabulary and the basics and then starting
PRIMM would be good.”. (Teacher 7)

Teacher 10 wanted to change the frequency of teaching programming in general,
having PRIMM embedded in more frequent but less long blocks of teaching, more
time for make and a closer meshing of investigate and modify. She planned to do more

23

discrete teaching on structure, particularly using the investigate stage, saying:

“I’m going to adapt this for the future, I will have discrete lessons on structure and make
sure the investigate focus is on that structure.” (Teacher 10)

One teacher explained that he was going to use PRIMM to increase pupil’s take-up
of computer science in later years

“I’m going to argue with my colleague that there should be a term of PRIMM in each of
years 7,8 and 9, because I think that will really crack it. I really do. It will really crack it
in terms of our recruitment.” (Teacher 14)

7.2.7. Feelings & emotions of teachers & learners

All teachers implied or directly mentioned both their own emotional response to
PRIMM and that of their learners, with 70 coded segments for teacher feelings and
over 120 segments for pupil emotions. Teachers overall were very positive about their
experiences with PRIMM, with some mentioning an increase in confidence and all but
one clearly saying they were going to implement PRIMM as a pedagogical approach
in their ongoing practice. One teacher explained:

“We’d never done reading before writing, we didn’t think about that. Reading before writ-
ing was a really, really good revelation for us, and we thought it was really positive”
(Teacher10)

One teacher mentioned that encouraging his colleagues to use PRIMM had built up
the confidence of less experienced colleagues and another teacher said:

“I loved it because I just felt it made sense . . . one of the challenges we’ve had previously is
we’ve had booklets that they work through but because you’ve got these strugglers, racers,
they would be working at such different speeds . . . So having that structure of each lesson
[with PRIMM] I never felt that I was struggling to deal with the different abilities in the
same way that I have done previously.” (Teacher 3)

In terms of pupil emotional reactions, Teacher 3 explained how over time students
become more confident with predicting, saying:

“There wasn’t this big drama if they didn’t get it (predict) right, because then we could
run it and talk about it - ‘this is why it’s not what you thought it was’. It didn’t knock
their confidence.” (Teacher 3)

Another teacher highlighted students being confident to share work which they
hadn’t been previously:

“Now a lot of those girls wouldn’t have wanted to share their quiz in the past, because
they might be convinced it wasn’t going to work . . . but everybody, in both sets, everybody
did that task.” (Teacher 14)

Other teachers described students being more confident to have a go. Having sample
code to work with which enabled quick success was mentioned by Teacher 8 as he said:

“I knew that everyone would get some code running because they’d be given some code.
And that would run and it would work. And I didn’t have to spend half the lesson getting
the typical problems out of the way. All the syntax and those other things, which get in
the way of actually getting some success from learners to start with” (Teacher 8)

Teacher 11 explained how his students“were really satisfied - lots of cheering when
they managed to get one of the modify activities done, and they would share it with
their friends.” (Teacher 11). However the same teacher described how students did

24

still get frustrated if the material was too hard.
Speed of understanding was linked to enjoyment of the tasks, with a teacher com-

menting that the students had learned more quickly using this approach:

“I think it’s the whole PRIMM approach. I think it was the predict and the run and not
just the modify, it just allowed them to get that concept a lot faster.” (Teacher 6)

Another teacher talked about a reduction in anxiety about getting things wrong,
explaining that it “didn’t actually matter, because it actually gave us more to talk about
and about why they thought it was wrong, and mistakes were completely acceptable and
a normal part of computer science. Then, it was much more successful.” (Teacher
7). This is very encouraging as students are often very reluctant to make mistakes
in computer programming (Sentance and Csizmadia, 2017). Finally, the elements of
collaborative work built into the PRIMM structure where possible was associated with
enjoyment of lessons, according to one of the teachers:

“That [paired and group talk] was different [from normal computing lessons], yes. It was
the fact that they were talking and bouncing ideas off each other made it enjoyable and
made it different.” (Teacher 10)

Overall PRIMM was associated by the teachers with many positive emotions, par-
ticularly relating to the structure and style of activities. Students and teachers were
more frustrated at times by some of the content within the materials, where it was
too hard or lengthy, as well be discussed in the next section.

8. Discussion

We began this paper by asserting that a sociocultural perspective on learning would
deepen our understanding of programming. We have now described in some detail our
evaluation of the PRIMM strategies with teachers in mandatory computing classes for
11-14 year olds. We now return to the two research questions:

• RQ1: Does the PRIMM approach impact on learner outcomes?
• RQ2: To what extent do teachers find the PRIMM approach an effective method

to use in school?

8.1. Research Question 1: Impact on learner outcomes

Our data shows a difference in the control and experimental groups and indicates
that those using the PRIMM lessons did better in the final test questions. This gives
support to the structure of PRIMM as the results were positive despite some reports
about some of the content being too advanced or too lengthy. With more appropri-
ately pitched content we might expect that the quantitative results would have shown
stronger significance levels.

So how can this improvement in learner outcomes be explained? Teachers certainly
reported that the familiarity of a routine with lessons starting with students discussing
code was an advantage of the PRIMM method. Several teachers also specifically felt
that reading code before having to write their own programs, as previously advocated
(Lister et al., 2009), helped students’ understanding as well as their confidence:

“I think they made more progress using this approach than the previous approach. My
anecdotal evidence is individuals who struggled the first time back in September when

25

we did it the old-fashioned way versus this time around using this approach. It really
helped the people who like a structure and get comfortable once they know what’s going
to happen.... the kids, the guinea pigs, have all got something out of this process. I’m
actually convinced of that. And a few kids have got a lot. The ones at the top end have
also got something out of it, but maybe not as much as some of the others.” (Teacher 8)

Students with high ability may have previously had no problems learning to program
in school, but the fact that teachers find that lower ability students find this approach
beneficial implies that this is worth pursuing.

In terms of the content, teachers’ feedback indicated that there were some issues with
the content that we devised to go within the structure of PRIMM, which accelerated
too quickly for some of the learners. In the training of the teachers we had encouraged
them to edit the content to meet the need of their learners, as long as they maintained
the structure of PRIMM, but some teachers were very reluctant to do that, feeling
that they would compromise the research. Two main difficulties emerged with the
materials: firstly that there was too much material per lesson, and secondly that the
difficulty of the investigate questions was too great for the learners.

In summary, teachers found that PRIMM was effective for a range of learners and
we conclude that if the content is pitched correctly within learners’ ZPD, PRIMM will
impact learner outcomes.

8.2. Research Question 2: Do teachers find PRIMM effective?

Teachers used PRIMM in different ways. Although it was explained that their partic-
ipation in the research meant they could adapt the content for their students several
did not do this at all and pushed through material that was too advanced for their stu-
dents. Others adapted the materials for their own students so that it included more
scaffolding. Thus some teachers were more aware of the need to work within their
learners’ ZPD than others.

The use of carefully constructed questions to guide student’s developing understand-
ing and relating to prior learning shows teachers being used as the MKO:

“So, I sort of scaffolded it for the lower ones. But I’d often be having a chat, asking them
some questions to coax out maybe an answer from them. Or if they were struggling with
getting the code extended, I’d refer them back to a previous lesson. So, remember the code
from the last lesson, go and have a look at that, that’s got some ideas on how to do this.”
(Teacher 8)

Some teachers adapted the material – as intended. Others didn’t and we felt that
more time spent on co-construction would have been better for some teachers. With
more funding, holding workshops with time for teachers to write their own PRIMM
materials including adapting appropriate content may be an effective solution.

A key finding from the study was around vocabulary in the PRIMM resources.
Many of the teachers discussed the use of vocabulary and the way that the investigate
questions ensured their students used technical terms. This not only highlights the
use of language to explain what the program is doing functionally, but consistent use
of technical words for programming constructs starts to give the students tools to
talk accurately about their programs. The emphasis on the importance of the right
vocabulary and use of language was very evident from our data.

Some teachers found the investigate part the hardest for their students to do, while
others found the predict part the most difficult. Teachers generally found it helpful
where the resource included content that revisited topics. The formative assessment

26

opportunities of the predict stage led Teacher 3 to be able to target different stu-
dent needs across classes and focus on discussion in the lesson. This highlights the
importance of language as mediation:

“I found that I then had a different discussion, depending on what they came up with. So
for example, one class might have got the predict part completely right whereas another
class might have gone off on a bit of a tangent and come up with different responses. So
it varied how I then taught that section or how much detail I went into with the starter,
depending on what they’ve said in response to the predict.” (Teacher 3)

Implementation issues exist in school that affect how methods can be effectively
used. One of the teachers worked in a school where policy was that the starter exercise
was done in silence, so this made it impossible to do the PRIMM predict task in pairs
at the beginning of the lesson. Other factors that affected the implementation were
the level of the content we provided, an issue we have raised earlier.

We found that teachers were enthusiastic about the extent to which PRIMM helped
them teach programming. They were able to describe what they were doing using the
language of PRIMM, using terms like investigate, modify and predict that they would
not have used before. Being part of the PRIMM trial had enabled them to reflect on
how they were teaching programming, and we would suggest that any teacher using
PRIMM would necessarily start to reflect on how they were teaching programming
and start using a vocabulary for strategies they were using.

The data revealed that teachers had found PRIMM gave them more confidence in
teaching programming, as well as giving them strategies for use in the future:

“I think I’m quite confident anyway, but I do think that it helped me in terms of un-
derstanding how they learn how to code, if that makes sense. How to adapt, to be more
inclusive,”. (Teacher7)

During the research study we were fortunate to be working with a dedicated and
reflective group of teachers who made valuable contributions to our research. The
implications for this in terms of future implementation are that PRIMM may need
additional structuring to be accessible to teachers who have other priorities or less
time to reflect in such depth.

Overall we believe that the PRIMM method has given teachers in the study some
strategies to use in their classroom to teach programming and increased their PCK.
Teachers need a range of strategies in a toolkit of approaches to use and this may be
a useful one for many teachers in the future. In particular we felt the PRIMM method
gave teachers a language to talk about the way that they were teaching programming,
and this increased their ability to reflect on how their students were learning.

A surprising outcome of the study was that several of the teachers went on to deliver
professional development sessions to other teachers in their networks about PRIMM,
and wrote about its use on social media. Subsequently many other teachers that we
have come across on an ad hoc basis have started to develop their own resources
using PRIMM and this gives us additional, although informal, evidence that it is an
approach that teachers like to use.

8.3. Further work

In attempting to answer the research questions, we are aware that there is more work
to be done. The next stage of the research is to follow up the teachers in our study
in one year’s time to find out how they used or adapted PRIMM in normal classroom

27

circumstances, outside a research study. This would give us a more longitudinal view
of the potential of the approach.

Another aspect of this work is to consider how to improve the investigative stage,
perhaps with a stronger focus on the Block model. In order to develop learning within
the ZPD, a more informed and detailed understanding of easy/hard concepts is needed
(Wiegand et al., 2016), so understanding progression in programming education is an
area where much more research is needed.

For future trials, we hope to develop more co-construction of materials with teachers,
with more differentiation built in, with the same PRIMM structure. Materials must
continue to be editable as students in the same stage of their education may vary, as
might be expected, in their ZPD (Vygotsky, 1978). Resource development requires an
in-depth understanding of programming and can be structured around the different
levels of the block model (Schulte, 2008) (as our materials were) with varied questions
being asked that referred to atoms of code, blocks of code and then whole sections
of code and questions that referred to both structure and function. A further piece
of work might be to support teachers in writing material around the block model
structure, and then teaching it with a PRIMM structure, thus enabling teachers to
distinguish between content and structure more clearly.

In our work we have focused on programming only, without considering algorithm
planning and design, and this is an area that we could develop further. The research
focused on text-based programming using Python, but we have anecdotal evidence
that some teachers are using this approach with block-based programming, which is
an avenue for investigation.

Finally, alongside this work, there is a need to embed the theoretical framework
surrounding our approach more specifically, clarifying the different roles of different
types of language as mediating activity in PRIMM lessons.

9. Conclusion

We have presented the PRIMM model for teaching programming, which seeks to recog-
nise the need for mediation in the learning process, following the Vygotskian concept of
mediation as tools, psychological tools including language, and human beings (Kozulin
and Presseisen, 1995). PRIMM draws on existing work in computer science education
relating to the teaching of programming, while rooted in sociocultural theory. Key to
our approach is having the program available in the social plane for students to work
with and understand, which reduces some of the initial obstacles in learning to pro-
gram. As the difficulties of novices learning to program are well documented (Sorva,
2013), within our PRIMM model we have built upon the rich seam of work on sup-
porting development of code comprehension skills and moving learners from the use
of others programs to independent creation of their own. Drawing on some excellent
work from other researchers (Lee et al., 2011; Lister et al., 2004; Schulte, 2008) we
have developed an approach which we believe is directly usable and effective in the
classroom.

As well as presenting PRIMM, we have rigorously evaluated it through a mixed-
methods study. In our study some teachers were reticent to fully engage in ownership of
resources for their students and were reticent to adapt materials whereas others confi-
dently and effectively tailored content to differentiate learning. Despite this limitation
our research has shown that classes using PRIMM for 10 or more lessons do signifi-
cantly better in a post-test than those in a control group. It has also demonstrated

28

that teachers are able to use the approach in secondary school and that classroom
implementation of our approach is viable. We have demonstrated that teachers have
welcomed the PRIMM approach in their classes because they feel it offers routine,
accessibility for lower ability students, and an enriched understanding of core pro-
gramming constructs.

It is important that all children leave school with the digital skills they will need
to contribute to our technology-driven world; of these, computer programming skills
are becoming increasingly important. Until the inclusion of computer science as a
mandatory subject, students, in informal and formal settings, were required to choose,
at some level, to be involved with learning to program. These students had some
degree of motivation or aptitude as they elected to take the subject. In the context of
the mandatory teaching of programming, this situation has changed, and we should
be focused on making computing accessible as well as available. We will not be able
to bring programming to all students with any level of integrity unless we explore
how to do this effectively from an educational point of view. The PRIMM method
has been developed based on a range of earlier work, and in this paper we have
tried to investigate its effectiveness and examine reasons why. With so many online
resources promising that they can help the teaching of programming without need for
a supporting educator and with learners working independently, PRIMM supports the
development of teacher’s pedagogical content knowledge (Shulman, 1986) in which
the mediating role of the teacher as the ’more knowledeable other’ is seen as key.
Teachers are crucial to whether students will learn programming in school or not, so
teachers need both confidence and resources that embed research-led ways of teaching
programming. We very much hope that researchers will continue with similar research
endeavours to support children and teachers in the learning of programming.

References

Alexandron, G., Armoni, M., Gordon, M., and Harel, D., 2014. Scenario-based Programming:
Reducing the Cognitive Load, Fostering Abstract Thinking, in: Companion Proceedings of
the 36th International Conference on Software Engineering, New York, NY, USA: ACM,
ICSE Companion 2014, 311–320, 00023.

Armoni, M., 2013. On teaching abstraction in computer science to novices., Journal of Com-
puters in Mathematics and Science Teaching, 32 (3), 265–284.

Basawapatna, A.R., Repenning, A., Koh, K.H., and Nickerson, H., 2013. The zones of proximal
flow: guiding students through a space of computational thinking skills and challenges, in:
Proceedings of the ninth annual international ACM conference on International computing
education research, ACM, 67–74.

Ben-Ari, M., 1998. Constructivism in computer science education, SIGCSE Bull., 30 (1), 257–
261.

Bennedsen, J. and Eriksen, O., 2006. Categorizing pedagogical patterns by teaching activities
and pedagogical values, Computer Science Education, 16 (2), 157–172.

Brown, A.L., Ash, D., Rutherford, M., Nakagawa, K., Gordon, A., and Campione, J.C., 1993.
Distributed expertise in the classroom, Distributed cognitions: Psychological and educational
considerations, 188–228.

Busjahn, T. and Schulte, C., 2013. The use of code reading in teaching programming, in:
Proceedings of the 13th Koli Calling International Conference on Computing Education
Research, New York, NY, USA: ACM, Koli Calling ’13, 3–11.

Cajander, Å., Daniels, M., and McDermott, R., 2012. On valuing peers: theories of learning
and intercultural competence, Computer Science Education, 22 (4), 319–342.

29

Campbell, D.T. and Stanley, J.C., 1963. Experimental and quasi-experimental designs for
research, Handbook of research on teaching, 171–246.

Caspersen, E., Michael, 2018. Teaching programming, in: S. Sentance, E. Barendsen, and
C. Schulte, eds., Computer Science Education: Perspectives on Teaching and Learning in
School, Bloomsbury Academic, London, 109–130.

Caspersen, M.E. and Bennedsen, J., 2007. Instructional design of a programming course: A
learning theoretic approach, in: Proceedings of the Third International Workshop on Com-
puting Education Research, New York, NY, USA: ACM, ICER ’07, 111–122.

Clear, T., 2012. The hermeneutics of program comprehension: A ’Holey Quilt’ theory, ACM
Inroads, 3 (2), 6–7.

Corney, M., Teague, D., Ahadi, A., and Lister, R., 2012. Some empirical results for neo-
piagetian reasoning in novice programmers and the relationship to code explanation ques-
tions, in: Proceedings of the Fourteenth Australasian Computing Education Conference -
Volume 123, Darlinghurst, Australia, Australia: Australian Computer Society, Inc., ACE
’12, 77–86.

Cutts, Q., Esper, S., Fecho, M., Foster, S.R., and Simon, B., 2012. The abstraction transition
taxonomy: Developing desired learning outcomes through the lens of situated cognition,
in: Proceedings of the Ninth Annual International Conference on International Computing
Education Research, New York, NY, USA: ACM, ICER ’12, 63–70.

Daniels, H., 2016. Vygotsky and pedagogy, Routledge.
Denny, P., Luxton-Reilly, A., and Simon, B., 2008. Evaluating a New Exam Question: Parsons

Problems, in: Proceedings of the Fourth International Workshop on Computing Education
Research, New York, NY, USA: ACM, ICER ’08, 113–124, 00090.

Diethelm, I. and Goschler, J., . Questions on spoken language and terminology for teaching
computer science, in: Proceedings of the 2015 ACM conference on innovation and technology
in computer science education, ITICSE ’15.

Du Boulay, B., 1986. Some difficulties of learning to program, Journal of Educational Com-
puting Research, 2 (1), 57–73.

Effendi, M., Matore, E.M., and Khairani, A., 2015. Assessing content validity of IKBAR among
field experts in Polytechnics, Aust J Basic App Sci, 7, 255–257.

Garneli, V., Giannakos, M.N., and Chorianopoulos, K., 2015. Computing education in K-
12 schools: A review of the literature, in: Global Engineering Education Conference
(EDUCON), 2015 IEEE, IEEE, 543–551, 00017.

Giest, H. and Lompscher, J., 2003. Formation of learning activity and theoretical thinking in
science teaching, Vygotsky’s educational theory in cultural context, 267–288.

Grover, S. and Basu, S., 2017. Measuring Student Learning in Introductory Block-Based Pro-
gramming: Examining Misconceptions of Loops, Variables, and Boolean Logic, in: Proceed-
ings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, New
York, NY, USA: ACM, SIGCSE ’17, 267–272, 00040.

Grover, S., Pea, R., and Cooper, S., 2015. Designing for deeper learning in a blended computer
science course for middle school students, Computer Science Education, 25 (2), 199–237.

Gujberova, M. and Kalas, I., 2013. Designing Productive Gradations of Tasks in Primary
Programming Education, in: Proceedings of the 8th Workshop in Primary and Secondary
Computing Education, New York, NY, USA: ACM, WiPSE ’13, 108–117, 00012.

Guk, I. and Kellogg, D., 2007. The ZPD and whole class teaching: Teacher-led and student-led
interactional mediation of tasks, Language Teaching Research, 11 (3), 281–299.

Hertz, M. and Jump, M., 2013. Trace-based Teaching in Early Programming Courses, in:
Proceeding of the 44th ACM Technical Symposium on Computer Science Education, New
York, NY, USA: ACM, SIGCSE ’13, 561–566, 00023.

Hubwieser, P., Armoni, M., Giannakos, M.N., and Mittermeir, R.T., 2014. Perspectives and
Visions of Computer Science Education in Primary and Secondary (K-12) Schools, Trans.
Comput. Educ., 14 (2), 7:1–7:9, 00041.

Jenkins, T., 2002. On the difficulty of learning to program, in: Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences, Citeseer, vol. 4,

30

53–58.
Kasto, N., 2016. Learning to Program: The development of knowledge in Novice Programmers,

Ph.D. thesis, Auckland University of Technology.
Kirschner, P.A., Sweller, J., and Clark, R.E., 2006. Why Minimal Guidance During Instruction

Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based,
Experiential, and Inquiry-Based Teaching, Educational Psychologist, 41 (2), 75–86.

Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I.K., Somanath, S., Weber, J., and Yiu, C.,
2017. A pedagogical framework for computational thinking, Digital Experiences in Mathe-
matics Education, 3 (2), 154–171.

Kozulin, A., 2003. Psychological tools and mediated learning, in: A. Kozulin, B. Gindis,
S. Ageyev, Vladimir, and M. Miller, Suzanne, eds., Vygotsky’s educational theory in cul-
tural context, Cambridge University Press, 15–38.

Kozulin, A. and Presseisen, B.Z., 1995. Mediated learning experience and psychological tools:
Vygotsky’s and feuerstein’s perspectives in a study of student learning, Educational psy-
chologist, 30 (2), 67–75.

Kuckartz, U., 2014. Qualitative text analysis: A guide to methods, practice and using software,
Sage.

Kumar, A.N., 2015. Solving Code-tracing Problems and Its Effect on Code-writing Skills Per-
taining to Program Semantics, in: Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education, New York, NY, USA: ACM, ITiCSE ’15,
314–319, 00005.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H.M., 2005. A study of the difficulties of novice
programmers, Acm Sigcse Bulletin, 37 (3), 14–18.

Leach, J. and Scott, P., 2003. Individual and sociocultural views of learning in science educa-
tion, Science & Education, 12 (1), 91–113.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., and
Werner, L., 2011. Computational thinking for youth in practice, ACM Inroads, 2 (1), 32.

Linn, M.C. and Dalbey, J., 1985. Cognitive consequences of programming instruction: Instruc-
tion, access, and ability, Educational Psychologist, 20 (4), 191–206.

Lister, R., 2011. Concrete and other neo-piagetian forms of reasoning in the novice programmer,
in: Proceedings of the Thirteenth Australasian Computing Education Conference - Volume
114, Darlinghurst, Australia, Australia: Australian Computer Society, Inc., ACE ’11, 9–18.

Lister, R., 2016. Toward a developmental epistemology of computer programming, in: Pro-
ceedings of the 11th Workshop in Primary and Secondary Computing Education, New York,
NY, USA: ACM, WiPSCE ’16, 5–16.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,
Moström, J.E., Sanders, K., Seppälä, O., et al., 2004. A multi-national study of reading and
tracing skills in novice programmers, in: ACM SIGCSE Bulletin, ACM, vol. 36, 119–150.

Lister, R., Fidge, C., and Teague, D., 2009. Further evidence of a relationship between ex-
plaining, tracing and writing skills in introductory programming, in: Proceedings of the
14th Annual ACM SIGCSE Conference on Innovation and Technology in Computer Sci-
ence Education, New York, NY, USA: ACM, ITiCSE ’09, 161–165.

Lopez, M., Whalley, J., Robbins, P., and Lister, R., 2008. Relationships between reading,
tracing and writing skills in introductory programming, in: Proceedings of the Fourth Inter-
national Workshop on Computing Education Research, New York, NY, USA: ACM, ICER
’08, 101–112.

Lye, S.Y. and Koh, J.H.L., 2014. Review on teaching and learning of computational thinking
through programming: What is next for K-12?, Computers in Human Behavior, 41, 51–61,
00303.

Machanick, P., 2007. A social construction approach to computer science education, Computer
Science Education, 17 (1), 1–20.

Margulieux, L., Ketenci, T.A., and Decker, A., 2019. Review of measurements used in com-
puting education research and suggestions for increasing standardization, Computer Science
Education, 1–30.

31

Margulieux, L.E. and Catrambone, R., 2016. Improving problem solving with subgoal labels
in expository text and worked examples, Learning and Instruction, 42, 58–71, 00015.

Mayring, P., 2000. Qualitative content analysis, Forum of Qualitative Social Research, 1 (2).
Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M.M., 2013. Learning computer science con-

cepts with Scratch, Computer Science Education, 23 (3), 239–264.
Morrison, B.B., Margulieux, L.E., Ericson, B., and Guzdial, M., 2016. Subgoals Help Stu-

dents Solve Parsons Problems, in: Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, New York, NY, USA: ACM, SIGCSE ’16, 42–47, 00025.

Papert, S., 1980. Mindstorms: Children, computers, and powerful ideas, Basic Books, Inc.
Pattis, R.E., 1990. A Philosophy and Example of CS-1 Programming Projects, in: Proceedings

of the Twenty-first SIGCSE Technical Symposium on Computer Science Education, New
York, NY, USA: ACM, SIGCSE ’90, 34–39.

Pea, R.D., 1986. Language-independent conceptual “bugs” in novice programming, Journal of
educational computing research, 2 (1), 25–36.

Perkins, D. and Martin, F., 1986. Fragile knowledge and neglected strategies in novice pro-
grammers, in: First workshop on Empirical studies of programmers, 213–229.

Perrenet, J., Groote, J.F., and Kaasenbrood, E., 2005. Exploring students’ understanding of
the concept of algorithm: levels of abstraction, ACM SIGCSE Bulletin, 37 (3), 64–68.

Perrenet, J. and Kaasenbrood, E., 2006. Levels of abstraction in students’ understanding of
the concept of algorithm: the qualitative perspective, 38 (3), 270–274.

Qian, Y. and Lehman, J., 2017. Students’ misconceptions and other difficulties in introductory
programming: a literature review, ACM Transactions on Computing Education (TOCE),
18 (1), 1.

Rahmat, M., Shahrani, S., Latih, R., Yatim, N.F.M., Zainal, N.F.A., and Ab Rahman, R., 2012.
Major problems in basic programming that influence student performance, Procedia-Social
and Behavioral Sciences, 59, 287–296.

Resnick, M., 2007. All I Really Need to Know (About Creative Thinking) I Learned (by
Studying How Children Learn) in Kindergarten, in: Proceedings of the 6th ACM SIGCHI
Conference on Creativity &Amp; Cognition, New York, NY, USA: ACM, C&C ’07, 1–6.

Resnick, M., 2017. Lifelong Kindergarten: Cultivating Creativity Through Projects, Passion,
Peers, and Play, MIT Press.

Robins, A., 2010. Learning edge momentum: A new account of outcomes in CS1, Computer
Science Education, 20 (1), 37–71.

Robins, A., Rountree, J., and Rountree, N., 2003. Learning and teaching programming: A
review and discussion, Computer science education, 13 (2), 137–172.

Rubin, M.J., 2013. The Effectiveness of Live-coding to Teach Introductory Programming, in:
Proceeding of the 44th ACM Technical Symposium on Computer Science Education, New
York, NY, USA: ACM, SIGCSE ’13, 651–656, 00041.

Ryoo, J.J., 2013. Pedagogy Matters: Engaging Diverse Students as Community Researchers in
Three Computer Science Classrooms, Ph.D. thesis, UCLA.

Schulte, C., 2008. Block model: An educational model of program comprehension as a tool for
a scholarly approach to teaching, in: Proceedings of the Fourth International Workshop on
Computing Education Research, New York, NY, USA: ACM, ICER ’08, 149–160.

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., and Paterson, J.H., 2010. An introduction
to program comprehension for computer science educators, in: Proceedings of the 2010
ITiCSE Working Group Reports, New York, NY, USA: ACM, ITiCSE-WGR ’10, 65–86.

Sentance, S. and Csizmadia, A., 2017. Computing in the curriculum: Challenges and strategies
from a teacher’s perspective, Education and Information Technologies, 22 (2), 469–495.

Sentance, S. and Waite, J., 2017. PRIMM: Exploring pedagogical approaches for teaching
text-based programming in school, in: Proceedings of the 12th Workshop in Primary and
Secondary Computing Education, ACM.

Sentance, S., Waite, J., and Kallia, M., 2019. Teachers’ Experiences of using PRIMM to Teach
Programming in School, in: Proceeding of the 50th ACM Technical Symposium on Computer
Science Education, New York, NY, USA: ACM, SIGCSE ’19, 561–566, 00023.

32

Shabani, K., 2016. Applications of Vygotsky’s sociocultural approach for teachers’ professional
development, Cogent Education, 3 (1).

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E., and Whalley, J.L., 2008. Going
SOLO to Assess Novice Programmers, in: Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science Education, New York, NY, USA: ACM,
ITiCSE ’08, 209–213, 00087.

Shulman, L., 1986. Those who understand: knowledge growth in teaching, American Educa-
tional Review, 15 (2).

Simon, Lopez, M., Sutton, K., and Clear, T., 2009. Surely We Must Learn to Read Before
We Learn to Write!, in: Proceedings of the Eleventh Australasian Conference on Computing
Education - Volume 95, Darlinghurst, Australia, Australia: Australian Computer Society,
Inc., ACE ’09, 165–170, 00000.

Sorva, J., 2013. Notional Machines and Introductory Programming Education, ACM Trans-
actions of Computing Education, 13 (2).

Sorva, J., 2018. Misconceptions and the beginner programmer, in: S. Sentance, E. Barendsen,
and C. Schulte, eds., Computer Science Education: Perspectives on Teaching and Learning
in School, Bloomsbury Academic, London, 109–130.

Sorva, J., Karavirta, V., and Malmi, L., 2013. A Review of Generic Program Visualization
Systems for Introductory Programming Education, Trans. Comput. Educ., 13 (4), 15:1–
15:64, 00141.

Spohrer, J.C. and Soloway, E., 1986. Novice mistakes: Are the folk wisdoms correct?, Commu-
nications of the ACM, 29 (7), 624–632.

Statter, D. and Armoni, M., 2016. Teaching abstract thinking in introduction to computer
science for 7th graders, in: Proceedings of the 11th Workshop in Primary and Secondary
Computing Education, New York, NY, USA: ACM, WiPSCE ’16, 80–83.

Su, A.Y.S., Yang, S.J.H., Hwang, W.Y., Huang, C.S.J., and Tern, M.Y., 2014. Investigating
the role of computer-supported annotation in problem-solving-based teaching: An empiri-
cal study of a Scratch programming pedagogy, British Journal of Educational Technology,
45 (4), 647–665, 00000.

Sudol-DeLyser, L.A., Stehlik, M., and Carver, S., 2012. Code comprehension problems as
learning events, in: Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education, ACM, 81–86.

Teague, D. and Lister, R., 2014. Programming: Reading, writing and reversing, in: Proceedings
of the 2014 Conference on Innovation and Technology in Computer Science Education, New
York, NY, USA: ACM, ITiCSE ’14, 285–290.

Tenenberg, J. and Knobelsdorf, M., 2014. Out of our minds: a review of sociocultural cognition
theory, Computer Science Education, 24 (1), 1–24.

The Royal Society, 2017. After the Reboot: Computing Education in UK Schools. Policy
Report, https://royalsociety.org/topics-policy/projects/computing-education/.

Tsai, C.Y., Yang, Y.F., and Chang, C.K., 2015. Cognitive Load Comparison of Traditional
and Distributed Pair Programming on Visual Programming Language, in: Educational In-
novation through Technology (EITT), 2015 International Conference of, IEEE, 143–146,
00001.

Vainio, V. and Sajaniemi, J., 2007. Factors in Novice Programmers’ Poor Tracing Skills, in:
Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, New York, NY, USA: ACM, ITiCSE ’07, 236–240, 00036.

Van Merrienboer, J.J.G. and Krammer, H.P.M., 1987. Instructional strategies and tactics
for the design of introductory computer programming courses in high school, Instructional
Science, 16 (3), 251–285, 00082.

Van Merriënboer, J.J.G. and Sweller, J., 2005. Cognitive Load Theory and Complex Learning:
Recent Developments and Future Directions, Educational Psychology Review, 17 (2), 147–
177, 00000.

Venables, A., Tan, G., and Lister, R., 2009. A closer look at tracing, explaining and code
writing skills in the novice programmer, in: Proceedings of the Fifth International Workshop

33

on Computing Education Research Workshop, New York, NY, USA: ACM, ICER ’09, 117–
128.

Vygotsky, L.S., 1962. Thought and word, in: L.S. Vygotsky, E. Hanfmann, and G. Vakar, eds.,
Studies in communication. Thought and Language, MIT Press, 119–153.

Vygotsky, L.S., 1978. Mind in society, Cambridge, MA: Harvard University Press.
Vygotsky, L.S., 1981. The instrumental method in psychology, in: J.V. Wertsch, ed., The

concept of activity in Soviet psychology, Armonk, NY, Sharpe.
Waite, J., Curzon, P., Marsh, D., and Sentance, S., 2018. Comparing K-5 teachers’ reported

use of design in teaching programming and planning in teaching writing, in: Proceedings of
the 13th Workshop in Primary and Secondary Computing Education, WiPSCE ’18.

Walqui, A., 2006. Scaffolding instruction for english language learners: A conceptual frame-
work, International Journal of Bilingual Education and Bilingualism, 9 (2), 159–180.

Wertsch, J.V. and Tulviste, P., 1992. LS Vygotsky and contemporary developmental psychol-
ogy., Developmental psychology, 28 (4), 548, 00552.

Wiegand, R.P., Bucci, A., Kumar, A.N., Albert, J.L., and Gaspar, A., 2016. A data-driven
analysis of informatively hard concepts in introductory programming, in: Proceedings of the
47th ACM Technical Symposium on Computing Science Education, ACM, 370–375.

Wood, D., Bruner, J.S., and Ross, G., 1976. The role of tutoring in problem solving, Journal
of child psychology and psychiatry, 17 (2), 89–100.

34

